Predicting False Discovery Proportion Under Dependence

نویسندگان

  • Subhashis GHOSAL
  • Anindya ROY
چکیده

We present a flexible framework for predicting error measures in multiple testing situations under dependence. Our approach is based on modeling the distribution of the probit transform of the p-values by mixtures of multivariate skew-normal distributions. The model can incorporate dependence among p-values and it allows for shape restrictions on the p-value density. A nonparametric Bayesian scheme for estimating the components of the mixture model is outlined and Markov chain Monte Carlo algorithms are developed. These lead to the prediction of false discovery proportion and related credible bands. An expression for the positive false discovery rate for dependent observations is also derived. The power of the mixture model in estimation of key quantities in multiple testing is illustrated by a simulation study. A dataset on kidney transplant is also analyzed using the methods developed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

False discovery control for multiple tests of association under general dependence

We propose a confidence envelope for false discovery control when testing multiple hypotheses of association simultaneously. The method is valid under arbitrary and unknown dependence between the test statistics and allows for an exploratory approach when choosing suitable rejection regions while still retaining strong control over the proportion of false discoveries.

متن کامل

A Tight Prediction Interval for False Discovery Proportion under Dependence

The false discovery proportion (FDP) is a useful measure of abundance of false positives when a large number of hypotheses are being tested simultaneously. Methods for controlling the expected value of the FDP, namely the false discovery rate (FDR), have become widely used. It is highly desired to have an accurate prediction interval for the FDP in such applications. Some degree of dependence a...

متن کامل

Estimating the Proportion of Nonzero Normal Means under Certain Strong Covariance Dependence by

The proportion of certain type of hypotheses is a key component of adaptive false discovery procedures in multiple testing. To date, a good estimator of the proportion of false null hypotheses under dependence is lacking. For multiple testing normal means, we develop a (uniformly) consistent estimator of the proportion of nonzero normal means when the dependent test statistics follow a joint no...

متن کامل

Estimating False Discovery Proportion Under Arbitrary Covariance Dependence.

Multiple hypothesis testing is a fundamental problem in high dimensional inference, with wide applications in many scientific fields. In genome-wide association studies, tens of thousands of tests are performed simultaneously to find if any SNPs are associated with some traits and those tests are correlated. When test statistics are correlated, false discovery control becomes very challenging u...

متن کامل

False discovery rate for scanning statistics

The false discovery rate is a criterion for controlling Type I error in simultaneous testing of multiple hypotheses. For scanning statistics, due to local dependence, clusters of neighbouring hypotheses are likely to be rejected together. In such situations, it is more intuitive and informative to group neighbouring rejections together and count them as a single discovery, with the false discov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010